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Abstract This paper presents a theoretical growth model that extends the
Mankiw—Romer—Weil (MRW) model by accounting for technological interdepen-
dence among regional economies. Interdependence is assumed to work through spatial
externalities caused by disembodied knowledge diffusion. The transition from theory
to econometrics leads to a reduced-form empirical spatial Durbin model specifica-
tion that explains the variation in regional levels of per worker output at steady state.
A system of 198 regions across 22 European countries over the period from 1995
to 2004 is used to empirically test the model. Testing is performed by assessing the
importance of cross-region technological interdependence and measuring direct and
indirect (spillover) effects of the MRW determinants on regional output.

JEL Classification C31-018 - 047 -R11

1 Introduction

Models of economic growth may be split into two broad categories: neoclassical and
endogenous growth models. Neoclassical growth models' postulate that physical cap-
ital accumulation contributes to the growth in the short-run, but long-run growth is
totally determined by technological progress which is exogenous to the models so

I Neoclassical growth models are characterized by three central assumptions. First, the level of technol-
ogy is considered as given and, thus, exogenously determined. Second, the production function shows
constant returns to scale in the production factors for a given, constant level of technology. Third,
the production factors have diminishing marginal products. This assumption is central to neoclassical
growth theory.
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that there is no explicit role for knowledge and spillovers (Stiroh 2003). In contrast,
new growth theory has focused renewed attention on the role of knowledge capital
in aggregate economic growth, with a prominent role for knowledge spillovers (see
Romer 1986; Grossman and Helpman 1991). Knowledge is inherently non-rival in its
use and thus its creation and diffusion most likely leads to spillovers and increasing
returns. It is this property of knowledge which is at the centre of endogenous growth
models that characteristically treat technological knowledge as completely diffused
within an economy,” and implicitly or explicitly assume that knowledge does not
diffuse across economies.

Empirical evidence suggests that technological knowledge spillovers> are to a sub-
stantial degree geographically localized, in the sense that the productivity effects of
knowledge decline with the geographic distance between sender and recipient loca-
tions (see Keller 2002; Fischer et al. 2009). At the same time these studies indicate
that there are no good reasons to believe that the flow of technological knowledge
stops because it hits national or regional boundaries. The rate at which knowledge
diffuses outward from the geographical location in which it is created has important
implications for the modelling of technological change and economic growth.

In this paper we consider the role of cross-region technological knowledge spill-
overs in economic growth and focus on the neoclassical growth model as augmented
by Mankiw et al. (1992), henceforth called the Mankiw—Romer—Weil (MRW) model.
This model has become an important tool for understanding the proximate factors
that determine interregional differences in output levels and growth. The objective
is to extend the MRW model by explicitly accounting for technological interdepen-
dence among the economies, caused by disembodied knowledge diffusion to test the
implied reduced-form empirical spatial Durbin model (SDM). Testing is performed
by assessing the technological interdependence among regions and measuring direct
and indirect (spillover) effects of the MRW determinants, in terms of the LeSage and
Pace (2009) approach.

The paper draws on some earlier contributions in different ways. In particular, it
models technological progress along the lines suggested by Ertur and Koch (2007),
but departs from this work in a number of important directions. First, the focus is on
an MRW rather than a Solow world of economies in which output is produced from
physical capital, human capital and consumption.* Second, the study shifts attention
from countries to regions as a more appropriate arena for analyzing growth processes.

2 There are numerous channels through which knowledge might diffuse. It may be disseminated at confer-
ences, seminars and workshops. It can also be part of the human capital that R&D personnel take with them
when changing jobs, or it can be the by-product of mergers and acquisitions, or other forms of interfirm
cooperation. It may also be uncovered through reverse engineering and other purposive search processes
(Fischer and Varga 2003).

3 We will use the terms spillovers and externalities in this paper interchangeably, even though they are
not synonymous. Knowledge spillovers should be distinguished from rent or pecuniary spillovers that are
closely linked to knowledge embodied in traded capital or intermediate goods.

4 Economists have long stressed the importance of human capital to the process of economic growth,
and ignoring human capital could lead to incorrect conclusions (Mankiw et al. 1992). But recent cross-

countrysstudiesshavesshownithateconomiegrowthrappears to be unrelated to increases in human capital (see
Benhabib and Spiegel 1994; Griliches 2000; Pritchett 2001; Ertur and Koch 2006, 2008 among others).
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Finally, the paper makes use of the very rich own- and cross-partial derivatives of the
implied empirical spatial Durbin model to quantify the magnitude of direct and indirect
(spillover) effects of the MRW determinants and hence to test the model predictions.

With Lépez-Bazo et al. (2004) we share the ambition to extend the MRW model by
incorporating spatial externalities, but depart from this study in two major respects. Our
focus is on levels rather than on rates of growth. This focus is important because—as
Hall and Jones (1999) point out—Ilevels capture the differences in long-run perfor-
mance which are more directly relevant to welfare as measured by consumption of
goods and services. Second, in the light of the recurring criticism in the literature that
theoretical models are only loosely connected with empirical evidence (see Levine and
Renelt 1992; Durlauf 2001), our study attempts to provide a more explicit and closer
link between theory and empirical testing, in an analytical rather than a discursive
manner.’

The remainder of the paper consists of four sections. Section 2 presents the theoret-
ical MRW model that accounts for technological interdependence among the regional
economies. Section 3 describes the transition from the reduced-form theoretical model
to the spatial econometric model specification along with the relevant methodology
for estimating and correctly interpreting the model. In Sect. 4 we use a system of 198
regions across 22 European countries over the period from 1995 to 2004, to investi-
gate whether the data support the predictions suggested by the model. Section 5 offers
some closing comments.

2 The theoretical model

Consider a world of N regional economies, indexedbyi = 1, ..., N. These economies
are similar in that they have the same production possibilities. They differ because
of different endowments and allocations. Within a regional economy, all agents are
identical. The economies evolve independently in all respects except for technological
interdependence.

2.1 The production function and knowledge externalities

Each regional economy is characterized by a (Hicks-neutral) Cobb-Douglas produc-
tion function, exhibiting constant returns to scale

Yie = AyKgK HZW LK M)

where i denotes the economy and ¢ the time period. Y is output, K the level of repro-
ducible physical capital, H the level of reproducible human capital, L the level of raw
labour and A the level of technological knowledge. Moreover, we assume that the
same production function applies to physical capital, human capital and consumption,

5 In the study by Lopez-Bazo et al. (2004) the predictions of their spatial MRW model are only partially
empiricallystestedyrinsthessensesthatsthesMiRWadeterminants are left out of consideration in the testing
exercise.
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so that one unit of consumption can be transformed costlessly into either one unit of
human capital or one unit of physical capital. The exponents ax and oy represent
the output elasticities with respect to physical and human capital, respectively. As in
Mankiw et al. (1992) we assume ok, oy > 0 and ag + oy < 1 which implies that
there are decreasing returns to both types of capital.

All variables are supposed to evolve in continuous time. The level of labour in econ-
omy i grows at rate n;. Each economy augments its physical and human capital stocks
at constant investment rates, siK and siH , respectively, while both stocks depreciate at
the same rate §. This induces capital accumulation equations of the form

Ki = s Yy — 5Ky (2a)

Hy = s?Yy, — 8Hy (2b)

where the dots over K;; and H;; represent the derivatives with respect to time. Accord-

ing to Eqgs. 2a-2b, the change in the capital stocks of region i, K. i+ and I‘;iz, is equal
to the amount of gross investment, siK Y;; and siH Y;;, respectively, less the amount of
depreciation that occurs during the production process.

The final factor in the production of output is the level of technological knowledge
available in region 7 at time ¢. In accordance with Ertur and Koch (2007) we model
Aj; as

N
Wi
Ai = 24K h? [145™ (3)

J#

Several aspects of modelling the aggregate level of technology deserve mentioning.
First, the term §2; should be understood as an expression reflecting the common stock
of knowledge in the world of regions. This stock of knowledge is exogenous to the
model: £2, = 29 exp(uut) where u is its constant rate of growth.

Second, we assume that technology is embodied in physical and human capital
per worker and that region’s i aggregate level of technology increases with both the
aggregate level of physical capital per worker, k;; = K;;/L;; and the aggregate level
of human capital per worker, h;; = H;;/L;;. The associated technical parameters 0
with0 < 6 < 1 and ¢ with0 < ¢ < 1 reflect spatial connectivity of k;; and h;; within
region i, respectively.®

Finally, we assume non-embodied knowledge to cause the technological progress
of region i to positively depend on the technological progress of other regions j # i,
for j = 1,..., N. The last term on the right-hand side of Eq. 3 formalizes the spa-
tial extent of this dependence by means of so-called spatial weight terms W;; that
represent the spatial connectivity between regions i and j, for j = 1, ..., N. These
terms are assumed to be non-negative, non-stochastic and finite, with the properties

6 We assume hereby that each unit of capital investment not only increases the stock of capital, but also
generatesiexternalitiesswhichileaditorknowledgesspillovers that increase the level of technology for all firms
in the region.
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0<W;<1,W;=0ifi =j andEj.V:lW,-j = 1fori =1,..., N. The parameter p
with 0 < p < 1 reflects the degree of regional interdependence.” Regions neighbour-
ing region i are defined as those regions j for which W;; > 0. The more a region i is
connected to region j, the higher W;; is and the more region i benefits from knowledge
spilling over from region j.

Rewriting the log-version of Eq. 3 in matrix form at time ¢ yields

A =R + 0k + oh + pWA “)

where A is the N-by-1 vector of the level of knowledge for the N regions, §2 is the
N-by-1 vector of the exogenous part of technology, k and k are the N-by-1 vectors of
per worker physical and human capital, respectively. W denotes the N-by-N matrix of
spatial weights representing the spatial connectivity structure between the N regions.
If p # 0 and if p~! is not an eigenvalue of W, we can resolve Eq. 4 for A (see Ertur
and Koch 2007), yielding

A=A —pW) ' +6I - pW) Uk + U — pW) 'h. )

Using the Sherman-Morrison formula to develop (I — pW)~! in its Taylor expansion
form and regrouping terms, we get® for a region i

1 N o] o0
5 02721 PP Wi @ 272 p" (W)
Ay = 82, ”kghﬁl_[kj,z P fhjtZ LR (©6)
J#
where (W");; denotes the (i, j)th element of W". Inserting this equation in the per

worker production function, given by normalizing Eq. 1 by L;,, we obtain the
theoretical spatial MRW model®

L N . .
Vie = 2, Pk R H k;” hjvt” (7a)
J#
o0
Uij =g +9(1+Zpr (W’)ii) (7b)
r=1
o0
uij = 92,0’ (W’)l.j fori # j (7¢)
r=1

7 Even though p is a global parameter characterizing the degree of technological interdependence in the
system of regions, it is important noting that the net effect of this dependence on the productivity level of
the firms in region i depends on the spatial connectivity relationship incorporated in the model (see LeSage
and Fischer 2008).

8 Note that (I — pW)~1 = T2 (oW)" = TX,p" (W), £ W is row standardized since W is so,
TR WR=02,32,p"=1/10-p)if|p| < 1.

9 It is worth noting that this model would become an endogenous growth model if g + o = 1. Then

factors. In this case, there is no steady state for the
- »
-) LN ly

definitely.
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vii =aH+¢(1 +> 0 (W’)ii) (7d)
r=1
vij=¢ > p (Wr),;  fori # j. (Te)

Equation 7a relates per worker output, y;; = Yj;/L;, in region i to physical and
human capital intensities in the same region and its neighbours j, with j # i. Note
that if 6 = ¢ = 0, then the model collapses to the MRW model with Y;;, =
2K XH! L1 *K~%H " which is characterized by a world of closed economies.

We can evaluate the social elasticity of output per worker in region i at time ¢ with
respect to both types of capital per worker. From Eqs. 7a to 7e it is evident that when
region i increases its own stocks of per worker physical and human capital, it receives
a social return of

0yir kir 0yir his
= — =u;i v (8a)
okis yir ohir yis g "

whereas this return increases to

%]ﬁ+i3yit@+ayit}ﬂ+zaytt ]t_ +Zu +v; +Zv
okir yir = okjs yir ohir yir i Ohji yir i i v J#i v

(8b)

if all regions simultaneously increase their per worker stocks as well.

2.2 Transitional dynamics and the steady state

The evolution of output per worker in region i is governed by the dynamic equations
for k and & given by

kir = sXyir — (i 4 8)kiy (9a)
hir = s yie — (i + 8)hiy (9b)

where s is the fraction of output in region i invested in physical capital, s the
fraction of output invested in human capital, n; the rate of population growth and Ja
constant and identical rate of depreaatlon

e the pe e ion given by Eq. 7 is characterized by decreas-
and 9b imply that per worker output of
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region i, fori =1, ..., N, converges to a steady state!? defined by

1
1 K \uii ¢ H\Vii Tu;;—v; N |
Vi = AT (57 )" (s7)M ! ”II(ﬁwqﬁw)ﬁﬁﬁﬁ
e (n + g + 8)uis+vi SAS
jl

(10a)
with the balanced growth rate!!

_ 3
(I=p)(A—ag —apg)—0—¢

8 (10b)

where the asterisk is used to signify the steady state levels for y, k and 4. Hence, the
physical capital-output and human capital-output ratios of region i, fori = 1, ..., N,
are constant so that

k}, siK

- = —) (11a)
Vi ni+g-+4é

h* sH

1A S (11b)

v ni+g+48

Substituting these expressions of capital-output ratios at steady state into the per worker
production function in Eq. 10a and taking the logarithm, gives an equation of the output
per worker of region i at steady state:

0
ul lK O[H—_'_qblnsiH—ln In(n; + g+ 96)

1
Inyf = ——Ing
W=y, o - 1—n -

N N
—P 2 Wiylnsf =7 > Wy lns]
J#F J#F

1

N N
ag +oyg 1l—ag —ayg
—i—ﬁpz Wijln(n; + g +96) + ?pZWﬁ lny;ft
J# J#
(12)
with n = ag + ag + 6 + ¢. It is important to note that Eq. 12 is valid only if the

regions are in their steady states or, more generally, deviations from steady state are
random.

10 Note that the balanced growth path is defined as a situation in which (i) per worker physical and human
capital grow at the same rate denoted by g, (ii) the exogenous part of technology grows at the constant rate
1 and (iii) the population growth rate and the investment rates for physical and human capital are constant.

L] L]

= 2 /Q+pTji Vi [yj0) -+ (g +O)Kir [Kie) +(@p +¢)
L]

ij(hji / hjp) for g at the balanced growth path.

1 This follows from solving d In y;, /dt
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This equation states—as the MRW model does—that a region will have higher per
worker output at a point in time (in the steady state) the higher are its investment rates
in physical and human capital and the lower are its rates of depreciation and population
growth. Per worker output of region i, however, depends also on determinants that lie
outside MRW'’s original theory. This output (at steady state) is negatively influenced
by physical and human capital investment rates in neighbouring regions j, for j # i,
those identified by W;; > 0 and positively influenced by their population growth
rates. Output (per worker) of region i also depends on (per worker) steady-state levels
in neighbouring regions. These output levels (In y;‘) of neighbouring regions in turn
depend on the MRW variables, so that changes in explanatory variables will affect
the dependent variable In y/*. We note that if § = ¢ = p = 0, Eq. 12 reduces to the
conventional MRW steady state equation.'?

3 Model specification, estimation and interpretation
Section 3.1 presents the empirical model associated with the reduced-form of the theo-

retical model given by Eq. 12, along with the relevant estimation approach. Section 3.2
directs attention to correctly interpret the parameter estimates.

3.1 Model specification and estimation

It is easy to see that the empirical counterpart of model (12) can be expressed at a
given time (¢t = 0 for simplicity) in the following form for region i:

N
Inyi = o+ BiInsS + palns/ + B3In(ni + g +8) +y1 D WijlnsF
J#
N N N
+y2 D Wijlns 43 D WijIn(nj + g +8)+ 2> Wijlny; +&  (13)
J# J# J#
where (1 — )" 'In2y = Bo + & fori = 1,..., N, with By a constant and ¢;

an independently and identically distributed random variable.'? Note that we have

the following theoretical constraints between coefficients: 81 + B2 + 3 = 0 and

y1 + v2 + y3 = 0, since the theoretical model predicts not only the signs, but also the

magnitudes of the coefficients on the MRW variables and their spatial lags.
Rewriting Eq. 13 in matrix form yields

y=inBo+XB+WXy+Wy+e (14)

12 1tis interesting to note that the spatialized MRW steady state equation collapses to the Ertur—Koch model
(Ertur and Koch 2007), if oy = ¢ = 0.

13 FollowingiMankiwsetala(1992)wewviewsthestermus2 to reflect not just technology, but also idiosyncratic
regional characteristics such as resource endowments, climate, institutions and so on.
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where

y N-by-1 vector of observations on the per worker output level for each of the
N regions,

X N-by-Q matrix of observations on the Q non-constant exogenous variables [here
0=3], including the vectors of the physical and human capital investment rates
and the population growth rate for each of the N regions,

B O-by-1 vector of the regression parameters associated with the Q non-constant
exogenous variables [here: B = (B1, B2, B3)'],

WX N-by-Q matrix of the Q spatially lagged non-constant exogenous variables,
¥y 0-by-1 vector of the regression parameters associated with the Q spatially lagged

non-constant exogenous variables [here:y = (y1, 2, y3)'],

Wy N-by-1 vector of the dependent spatial lag variable that contains a linear combi-
nation of the per worker output levels from neighbouring regions, those identified
by W;; > 0,

J. the spatial autocorrelation coefficient, where 1 = (1 —agx —ag)p(n — 1)1,

ty N-by-1 vector of ones with the associated scalar parameter Sy,

& N-by-1 vector of errors assumed to be identically and normally distributed with
zero mean: &€ ~ N(0, o2I).

All variables are in log form. The variables spanned by X represent the determinants
that are suggested by the MRW model, whereas WX represent those that lie outside
MRW’s original theory, as does W'y that represents the technological interdependence
between the regions and defines the difference to a MRW world of closed regions.

In the spatial econometrics literature, a model specification like Eq. 14 is referred
to as a spatial Durbin model. Maximizing the full log likelihood for this model would
involve setting the first derivatives with respect to the coefficient vector § = (8o, B, ¥)’
equal to zero and simultaneously solving these first-order conditions for all the param-
eters. Equivalent ML estimates can be found using the log-likelihood function con-
centrated (with respect to 8 and the noise variance parameter o) which takes the
following form:

N 1
In£(2) = 2 In2 +In | — iW| — 2 In(@o - Jer) o — Jer). (15)

The notation In £(2) in this equation indicates that the scalar concentrated log-
likelihood function value depends on the parameter A. ¢y and e are the estimated
residuals in a regression of y on Z and Wy on Z, respectively, with Z = [ty X WX],
see LeSage and Pace (2009) for details.

Optimizing In £(4) with respect to A permits us to find the ML estimate 7 and to
use this estimate in the closed form expressions for /Ai(j,), f/(j,) and 62(:1) to produce
ML estimates for these parameters. A variety of univariate techniques may be used for
optimizing the concentrated log-likelihood function. In this study we used the simplex
optimization technique.
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3.2 Interpreting the model

While linear regression parameters have a straightforward interpretation as the partial
derivatives of the dependent variable with respect to the explanatory variables, in the
SDM specification given by Eq. 14 interpretation of the parameters becomes more
complicated. This comes from introducing regional dependence (on a few neighbour-
ing regions) at the outset in the theoretical model. A logical consequence of the simple
dependence on a small number of nearby regions in the initial theoretical specification
in Eq. 6 leads to a reduced form of the model such that each region potentially depends
on all other regions (not just the few neighbours that made up our initial model spec-
ification). But of course there is a decay of influence as one moves to more distant or
less connected regions.

Because of this, partial derivatives take a much more complicated form and allow for
measuring direct and indirect (or spatial spillover) impacts. These measure the effect
arising from a change in an MRW characteristic variable in region i on per worker
output in other regions j # i. Specifically, Eq. 16 shows the partial derivatives that
take the form of an N-by-N matrix

ay .
= Un —AW)"UANBy + Wyy) (16)
X,
where X, denotes the gth MRW characteristic variable, and 8, and y,, the associated
parameter coefficients.

Following LeSage and Pace (2009) we can actually quantify and summarize the
complicated set of non-linear impacts that fall on all regions as a result of changes in
the MRW variables in any region, using their scalar summary impact measures for the
N-by-N matrix of direct and cumulative spatial spillover (indirect) impacts. By cumu-
lative we mean that spillovers falling on all neighbours are summed. LeSage and Pace
(2009, 2010) point out that the main diagonal of the matrix (Iy —AW) ™1 (I y By +Wyy)
represents own partial derivatives, which they label direct effects and summarize using
an average of these elements of the matrix. The off-diagonal elements correspond to
cross-partial derivatives, which can be summarized into scalar measures of the cumu-
lative spillovers using the average of the row-sum of the matrix elements.

To properly interpret the model, we rely on LeSage and Pace (2009) approach to
calculating measures of dispersion to draw inferences regarding the statistical signif-
icance of direct or indirect effects. These are based on simulating parameters from
the normally distributed parameters 8, y,, 4 and o2, using the estimated means and
variance—covariance matrix. The simulated draws are then used in computationally
efficient formulas to calculate the implied distribution of the scalar summary measures.

4 Testing the spatial MRW model

In this section we consider the question whether data for European regions sup-
port the predictions suggested by the spatially augmented MRW model. Using the
empirical model in Eq. 14, we estimate the direct and indirect effects of the three MRW
determinants and assess.the role played by regional technological interdependence in
the growth process.
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4.1 Sample data and the spatial weight matrix

Our sample is a cross-section of 198 regions belonging to 22 European countries
over the 1995-2004 period. The units of observation are the NUTS-2 regions. These
regions, though varying in size, are generally considered to be the most appropriate
spatial units for modelling and analysis purposes (Fingleton 2001). In most cases,
they are sufficiently small to capture subnational variations. But we are aware that
NUTS-2 regions are formal rather than functional regions, and their delineation does
not represent the boundaries of regional growth processes very well. The choice of
the NUTS-2 level might also give rise to a form of the modifiable areal unit problem,
well known in geography (see, for example, Getis 2005).

The sample regions include regions located in Western Europe as well as in East-
ern Europe. Western Europe is represented by 159 regions'# covering Austria (nine
regions), Belgium (11 regions), Denmark (one region), Finland (four regions), France
(21 regions), Germany (40 regions), Italy (18 regions), Luxembourg (one region),
the Netherlands (12 regions), Norway (seven regions), Portugal (five regions), Spain
(15 regions), Sweden (eight regions) and Switzerland (seven regions). Eastern Europe
is covered by 39 regions including the Baltic states (three regions), the Czech Republic
(eight regions), Hungary (seven regions), Poland (16 regions), Slovakia (four regions)
and Slovenia (one region). The main data source is Eurostat’s Regio database.'> The
data for Norway and Switzerland were provided by Statistics Norway and the Swiss
Office Fédéral de la Statistique, respectively.

The data cover the period from 1995 to 2004 when economic recovery in Eastern
Europe gathered pace. The time period is relatively short'® due to a lack of reliable
figures for the regions in Eastern Europe (Fischer and Stirbock 2006). The political
changes since 1989 have resulted in the emergence of new or re-established states (the
Baltic states, the Czech Republic, Slovakia and Slovenia) with only a very short his-
tory as sovereign national entities. In most of these states historical data series simply
do not exist. Even for states such as Hungary and Poland that existed for much longer
time periods in their present boundaries, the quality of data referring to the period
of central planning imposes serious limitations on analyzing regional growth. This is
closely related to the change in accounting conventions, from the material product
balance system to the European system of accounts 1995. Cross-region compari-
sons require internationally comparable regional data which are not only statistically
consistent but also expressed in the same numéraire. The absence of market exchange
rates in the former centrally planned economies is a further impediment.

We focus on an output-based measure and use gross value added, gva, rather than
gross regional product at market prices as a proxy for regional output. gva is the net

14 We exclude the Spanish North African territories of Ceuta y Melilla, the Spanish Balearic islands,
the Portuguese non-continental territories Azores and Madeira, the French Départements d’Outre-Mer
Guadaloupe, Martinique, French Guayana and Réunion, and, moreover, Aland (Finland), Corse, Sardegna
and Sicilia from consideration.

15 The data used for labour stem from the Cambridge Econometrics database.

16 Jslam (1995) and Durlauf and Quahy(1999)remphasize growth regressions of the type considered in this
paper are also valid for shorter time spans since they are steady state regressions.
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430 M. M. Fischer

result of output at basic prices less intermediate consumption valued at purchasers’
prices and measured in accordance with the European system of accounts 1995. The
dependent variable is gva divided by the number of workers in 2004.!7 We measure
n as the growth rate of the working age population, where working age is defined as
15-64 years and use gross fixed capital formation per worker as a proxy for physical
capital investment. There is no clear-cut definition on how human capital should be
represented and measured. In this study we measure human capital in terms of edu-
cational attainment'® based on data for the active population aged 15 years and older
that attained the level of tertiary education, as defined by the International Standard
Classification of Education (ISCED) 1997 classes five and six. n;, siK and siH are
averages for the period 1995-2003. We suppose'? that g 4+ 8 = 0.05, which is a fairly
standard assumption in the literature (see among others, Mankiw et al. 1992; Islam
1995; Temple 1998; Durlauf and Johnson 1995; Ertur and Koch 2007; Fingleton and
Fischer 2009).

The definition of the spatially lagged variables in the model depends on the speci-
fication of the spatial weight matrix that summarizes the spatial connectivity structure
between the regions. Different spatial weight matrices may be chosen.?? In this study,
we employ a binary first-order contiguity matrix, constructed on the basis of digi-
tal boundary files in a GIS and implemented in row-standardized form in order to
assign equal weight to all contiguous neighbouring regions. Two regions are defined
as neighbours when they share a common boundary. This choice of the spatial weight
matrix is well in line with the empirical evidence that knowledge spillovers and their
productivity effects are to a substantial degree localized (see Fischer et al. 2009).

4.2 Estimation results

We begin by briefly considering the ML-parameter estimates and associated implied
parameter values from our spatial MRW model version. Table 1 summarizes these
estimates along with some diagnostics and performance measures. Diagnostic tests
were carried out for heteroskedasticity, using the spatial Breusch—Pagan test,>! and
for normality, using the Jarque—Bera test.”> Performance of the model is expressed in
terms of conventional statistical measures of goodness of fit, such as the log-likelihood

17 1o implement the model we have been assuming that the regions were in their steady state in 2004 (or
more generally, that the deviations from steady state were random).

I8 This variable is clearly imperfect: it completely ignores primary and secondary education, and on-the-job
training and does not account for the quality of education.

19 There are no strong reasons to expect g and § to vary greatly across regions, nor are there any data that
would allow us to estimate region-specific balanced growth and depreciation rates.

20 For extensive reviews see Cliff and Ord (1981), Anselin (1988), Anselin and Bera (1998) and Griffith
(1995). The latter provides some guidelines for specifying the weight matrix.

21 This test points to homogeneity in the unconstrained estimation of the spatially augmented MRW model,
but reveals heterogeneity in the constrained estimation.

22 The Jarque=Beratestindicates;allackiof normalitysBecause of the large sample, the test is very powerful,
detecting significant deviations from normality which have, however, little significance in practice.
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Table 1 The spatial MRW model: constrained and unconstrained estimation results

Constrained estimation Unconstrained estimation

Coefficient Standard deviation p-value Coefficient Standard deviation p-value

Constant 27900 0.5659 0.0000 59666  1.0509 0.0000
InsX - - - 0.5582  0.0377 0.0000
InsH - - - 0.1535  0.0319 0.0000
In(n; +0.05) - - - —0.0873  0.1001 0.3829
InsX —In(n; +0.05) 0.5421  0.0411 0.0000 - - -
Ins? —In(n; +0.05) 0.1180  0.0341 0.0005 - - -
W in sk - - - —02768  0.0624 0.0000
Wins/l - - - —0.1353  0.0409 0.0009
W n(n; + 0.05) - - - 04387  0.1701 0.0099
WiinsK —In(n; +0.05)] 03196  0.0602 0.0000 - - -
Wins —In(n; +0.05)] —0.1248 00431 00038 - - -
Winy; 07770 0.0456 0.0000  0.6670  0.0584 0.0000

Implied parameters

ak 0.2604  0.0357 0.0000  0.2548 0.0394 0.0000
ap 0.1018  0.0342 0.0029  0.1257 0.0373 0.0007
0 0.0659  0.0238 0.0056  0.0714 0.0288 0.0133
¢ —0.0310  0.0245 0.2063 —0.0361 0.0276 0.1908
o 0.7361 0.0548 0.0000  0.6307 0.0660 0.0000
3 0.4203  0.0157 0.0000  0.4404 0.0143 0.0000
Test of restrictions (LR) - - 46.3978 (p = 0.0000)
Common factor test (LR) 63.8451 (p = 0.0000) 29.6094 (p = 0.0000)
Diagnostics
Heteroskedasticity 12.6332  (p =0.0132) 7.7210 (p =0.2593)
Normality 231.2504  (p =0.0010) 23.8075 (p =0.0016)

Performance measures

Log-likelihood/N 0.9308 1.0479
Sigma square 0.0152 0.0128
R* 0.9493 0.9660

The rates sX, s and n are averages over the period 1995-2003; LR denotes likelihood ratio; § = ax +apy + (6 + @)
(1 —ag —ay —6 —¢)~"; standard errors and p-values of the implied values of ag, ay, 0, ¢, p and & are calculated
using a simulation method (10,000 random draws); heteroskedasticity is tested using the studentized spatial Breusch—
Pagan test, and normality using the Jarque—Bera test; R* is a measure of the overall fit of the model, defined as the
correlation between the fitted and observed values of the dependent variable

value divided by N, the noise variance sigma square and R* defined as the correlation
between the fitted and observed values of the dependent variable.

esent the results imposing the theoretical
» + y3 = 0 on estimating the model and
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the final three columns report those without imposing the constraints. The parameter
estimates are given in the first and fourth columns, followed by the standard errors
in the second and fifth, and the p-values in the third and sixth columns. The parame-
ters obtained by constrained or unconstrained estimation allow us to calculate output
elasticity parameters a¢x and oy and implied values of the parameters 6, ¢ and p.
Standard deviations and p-values were computed based on the simulation technique
with 10,000 random draws.

The following aspects of the results presented in the table support our spatial MRW
model. First, the coefficients of all the determinants have the predicted signs and are
highly significant. The only exception is the B3 parameter estimate for population
growth that has the correct sign, but is insignificant.

Second, the estimates of the output elasticities implied by the SDM parameter esti-
mates are empirically plausible. The elasticity of output with respect to the stock of
physical capital is close to one-third. The implied value of « g is significant, but smaller
by a factor of about two. It is interesting to recognize that the implied parameter values
obtained from constrained and unconstrained estimation are strikingly similar.

Third, the spatial autocorrelation / is positive and significant. The implied value
of p that measures the degree of technological interdependence among the regions
is 0.63 with a standard deviation of 0.07 (p = 0.00) in the case of unconstrained
estimation and 0.74 with a standard deviation of 0.05 (p = 0.00) in the constrained
case. This result indicates that regions cannot be treated as independent observations
and hence growth models should explicitly account for this kind of interdependence.

Fourth, a common factor test using likelihood ratios (see LeSage and Pace 2009 for
details) rejects the three non-linear restrictions>: y; + B1p = 0, y2 + f2p = 0 and
13+ B30 = 0. The likelihood is 225.61 for the spatially augmented model specification
and 192.69 for the MRW model with spatial error terms, based on the binary first-
order contiguity matrix and non-constrained estimation. This leads to a difference of
32.92, and this represents a rejection of the spatial error model in favour of the spatial
Durbin model specification using the 99% critical value for which x?(3) equals 11.34.
This result is in accordance with Lépez-Bazo and Fingleton (2006), questioning the
credibility of specifications with dependence structures in the error terms.

Finally, differences in the MRW variables and their spatial lags account for a large
fraction of the cross-region variation in per worker output. The measure R* of the
overall fit of the model, defined as the correlation between the fitted and observed
values of the dependent variable, ranges from 0.949 (constrained estimation) to 0.966
(unconstrained estimation). Nonetheless, the model is not completely successful since
the joint theoretical restrictions between the parameters are rejected by a likelihood
ratio test.

As emphasized in Sect. 3.2, it is necessary to calculate the direct and indirect effects
associated with changes in the MRW determinants on regional output to arrive at a
correct interpretation of the model, in terms of the LeSage and Pace (2009) approach.
Table 2 presents the corresponding impact estimates, along with their associated

23 The model specification with these restrictions is then the so-called constrained SDM, which is for-
mallysequivalentitorasMRWomodelwithsspatialrautoregressive errors that may be written in matrix form as
y = Xy + emrw With eyrw = pWepmRrw + € where eprw is the same as before if 6 = 0 = ¢.
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Table 2 The spatial MRW (unrestricted estimation): direct and indirect impact estimates

Impact estimates

Coefficient Standard deviation p-value
Direct impacts
In siK 0.5801 0.0355 0.0000
In siH 0.1463 0.0309 0.0000
In(n; 4 0.05) —0.0022 0.0988 0.9826
Indirect impacts [=spatial spillovers]
W In x/K 0.2653 0.0680 0.0001
Wins ! —0.0919 0.0849 0.2791
Wln(n; + 0.05) 1.0717 0.4268 0.0120

The direct and indirect impact estimates reflect an average of diagonal and off-diagonal elements of
Iy — wy~ta N Bq + Wyg) which corresponds to scalar summary measures of the own and cross-partial
derivatives. A set of 10,000 random draws from estimation was used to construct standard deviations and
p-values for these impact estimates

statistics. A comparison of the direct impact estimates in Table 2 and the SDM coeffi-
cient estimates in Table 1 shows that these two sets of estimates are not so dissimilar
in magnitude. The direct impact estimate of the human capital variable is slightly
lower, while that of the physical capital variable is somewhat larger than one would
infer from the SDM coefficient estimates (unconstrained estimation). The difference
between these estimates is due to feedback effects.

The indirect impact estimates are what economists usually refer to as spatial spill-
overs. The presence or absence of significant cross-region spillovers depends on
whether the indirect effects that arise from changing region i’s MRW variables result
in statistically significant indirect effects. We emphasize that it would be a mistake
to interpret the SDM coefficient estimates y,(q = 1, ..., 3) as representing spatial
spillover magnitudes.

To see how incorrect this is, consider the difference between the spatial lag coef-
ficient y» for the human capital investment rate from the SDM model (reported in
Table 1) and the indirect impact estimate calculated from the partial derivatives of
the model (reported in Table 2). We see that the SDM coefficient associated with the
spatial lag variable W In S/H is —0.135 with p = 0.001 and a standard deviation of
0.041. The indirect impact is —0.092, but not significantly different from zero, based
on the #-statistic (f = —1.08%). If we would incorrectly view the SDM coefficient
estimate y» on the spatial lag of In SJH as reflecting the indirect impact, this would
lead to an inference that the human capital variable in neighbouring regions exerts a
negative and significant indirect impact on regional output. However, the true impact
estimate points to the absence of cross-region human capital spillovers.

The SDM coefficient associated with the spatial lag variable W In sX is —0.2768
(standard deviation: 0.062) and statistically significant (p = 0.000). If we would

@ Springer



434 M. M. Fischer

incorrectly view this SDM coefficient estimate as reflecting the indirect impact, this
would lead to an inference that the physical capital variable in neighbouring regions
exerts anegative and significant indirect impact on regional output. But, the true impact
estimate indicates a positive and significant spillover impact arising from changes in
the physical capital variable (see Table 2).

It is also the case that treating the sum of the SDM coefficient estimates from the
MRW determinants and their spatial lags as total impact estimates would lead to erro-
neous results. The total impact of physical capital accumulation on regional output is
a positive 0.845 (standard deviation: 0.062) that is statistically significant based on
the -statistic (+ = 13.568), whereas the total impact suggested by summing up the
SDM coefficients would equal to one-third of this magnitude only. This difference is
due to the size of indirect impacts which cannot be correctly inferred from the SDM
coefficient. In the case of the human capital variable, where the indirect impact is zero,
and the SDM estimate (y» = 0.154) is close to the direct impact estimate of 0.146,
the total impact could be inferred from the SDM coefficient without major error.

Since our empirical model is specified by using a log-transformation of both the
dependent and independent variables, the total impact estimates can be interpreted as
elasticities. Based on the positive 0.845 estimate for the total impact of the physical
capital determinant, we would conclude that a 10% increase in regional physical cap-
ital investment would result in a 8.5% (and significant) increase in regional output.
Around two-thirds of this impact comes from the direct effect magnitude of 0.58
and one-third from the indirect or spatial spillover impact based on its scalar impact
estimate of 0.2653.

5 Closing comments

In this paper, we have suggested a spatially augmented MRW model for explaining
interregional differences in output per worker. Output is produced from physical capi-
tal, human capital, and labour, and used for investment in physical capital, investment
in human capital and consumption. The economies evolve independently in all respects
except for technological interdependence. Technological interdependence is assumed
to work through spatial externalities caused by disembodied knowledge diffusion.

The theoretical model and the associated reduced-form empirical SDM model both
imply a non-independent relationship between changes in region j’s physical and
human capital or population growth rates and region i. A correct interpretation of the
model parameters, in terms of the LeSage and Pace (2009, 2010) approach, indicates
that the model is consistent with the empirical evidence on cross-region technological
knowledge spillovers. Interdependence among regions works through physical capital
externalities. The results indicate the existence of cross-region physical capital, but
the absence of such human capital externalities. This does not imply, however, that
the role of human capital is unimportant. Even using an imprecise proxy for human
capital, we find that human capital investment is important. A 10% increase in human
capital investment would lead to a 1.5% increase in regional output, and this increase
is statistically significant.

@ Springer



A spatial Mankiw—Romer—Weil model 435

Our model rests on the existence of a geographic component to the disembodied knowl-
edge spillover mechanism. Conventional wisdom that geographic distance attenuates
spillovers supports this assumption. Regardless of geographic proximity, knowledge
spillovers are also believed to be higher between regions with similar technological
profiles (see, for example, Fischer et al. 2006). According to this view, the ability to
make productive use of another region’s knowledge depends on the degree of techno-
logical similarity between regions. One avenue for future research would be to explore
the importance of the technological dimension to the spillover mechanism in regional
growth processes.
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